Grafana Assistant : Agent IA pour observabilité
Grafana Labs annonce la disponibilité générale de Grafana Assistant, un agent IA intégré directement dans Grafana dashboards pour :
- Analyse anomalies (détection automatique)
- Incident investigation (corrélation logs/metrics)
- Recommendations actions (mitigations proposées)
Résultats beta :
- MTTR réduit de 60% (30 min → 12 min moyenne)
- False positives baissées 45% (ML filtering)
- Satisfaction ops teams : 92/100
Architecture Grafana Assistant
Core capabilities
┌─────────────────────────────────────────┐
│ Grafana Dashboard (Frontend) │
│ │
│ [Grafana Assistant Chatbot] │
│ "Why is CPU high on prod-api-3?" │
└──────────────┬──────────────────────────┘
│
┌──────────────▼──────────────────────────┐
│ Grafana Assistant Backend (LLM) │
│ │
│ ├─ Query understanding (NLP) │
│ ├─ Datasource routing (metrics/logs) │
│ ├─ Context retrieval (recent events) │
│ └─ Answer generation (Claude/GPT-4) │
└──────────────┬──────────────────────────┘
│
┌──────────┴──────────┬──────────┐
│ │ │
┌───▼──┐ ┌──────▼─┐ ┌───▼──┐
│ Prom │ │ Logs │ │ Traces│
│etheus│ │(Loki) │ │(Tempo)│
└──────┘ └────────┘ └──────┘
Use cases principaux
- Anomaly explanation **
User : "Pourquoi API latency est élevée?"
Assistant flow :
├─ Récupère metrics dernière heure (latency, CPU, memory)
├─ Détecte corrélation : latency ↑ = DB connections ↑
├─ Cherche events logs : "Slow query detected"
├─ Roots cause : Requête N+1 problem dans nouveau code deploy
└─ Recommandation : "Rollback dernier deployment ou optimiser query"
Response time : 5-8 secondes
Accuracy : 87% (comparé human investigation)
- Incident investigation **
New feature : Grafana Assistant Investigations
Query : "Analyze incident in last 2 hours"
Pipeline :
├── Collect all relevant signals
│ ├─ Metrics spike (what changed ?)
│ ├─ Logs errors (what failed ?)
│ ├─ Traces latency (where is bottleneck ?)
│ └─ Events (deploys, config changes)
├── Pattern matching (common incident types)
├── Hypothesis generation (root causes)
└── Actionable recommendations
Output : Investigation report (5 min)
Manual investigation time replaced : 30-45 min
- Alerting intelligence **
Traditional alerts :
├─ CPU plus de 80% → Alert
├─ Memory plus de 90% → Alert
└─ Network latency plus de 500ms → Alert
Problem : Alert fatigue (90% false positives)
Grafana Assistant approach :
├─ Contextual evaluation
│ ├─ Is this spike normal ? (compare historical)
│ ├─ Correlated with deployments ? (expected)
│ └─ Customer impacted ? (check error rates)
├─ Decision : Alert now ? Or suppress ?
└─ Result : 45% fewer notifications
Effect : Teams respond to real issues, not noise
Features détaillées
Natural language querying
User inputs (plain English/French) :
❌ Traditional : SELECT * FROM metrics WHERE cpu plus de 80
✅ Grafana Assistant : "Show me servers with unusual CPU patterns"
Translations :
├─ Identify "unusual" (ML anomaly detection)
├─ Find relevant servers (auto-scope)
├─ Return visualization (dashboard auto-generated)
Multi-source correlation
Query : "Why did orders drop at 15:30 ?"
Grafana Assistant investigates :
├─ Checkout service latency ↑ spike
├─ Payment gateway logs : "Connection timeout"
├─ Tracing data : Calls to payment vendor delayed
├─ Infrastructure : No CPU/memory issues detected
└─ Root cause : Third-party payment vendor degraded
(not internal issue, no action needed)
Cost anomaly detection
For infrastructure managers :
Query : "Why did AWS bill spike 40% this month ?"
Investigation :
├─ Compute : +2,000 EC2 hours (new app deployment)
├─ Storage : +500GB S3 (log retention policy changed)
├─ Network : +120TB egress (unexpected data transfer)
└─ Recommendation : Optimize NAT gateway usage (-$50k/month)
Value : Identify cost optimization opportunities
Comparaison avec competing solutions
Vs PagerDuty (Incident management)
| Feature | Grafana | PagerDuty |
|---|---|---|
| Metrics monitoring | ✓ | ✗ (3rd party) |
| AI investigation | ✓ (New) | ✓ (via Copilot) |
| Alerting logic | ✓ | ✓ |
| Visualization | ✓✓ | ✗ (limited) |
| Integration | Cloud-native | Enterprise legacy |
| Price | $9-25/user | $14-45/user |
Winner : Grafana (better for ops teams)
Vs Datadog (Full-stack observability)
| Aspect | Grafana | Datadog |
|---|---|---|
| AI assistant | ✓ (just launched) | ✓ (mature) |
| Breadth | Narrower (monitoring focus) | Wider (security, APM, etc) |
| Ease of use | Modern | Legacy UI |
| Cost efficiency | 70% cheaper | Premium positioning |
| Community | Large | Smaller |
Winner : Depends on needs. Grafana = pure monitoring, Datadog = full-stack
ROI calculation
Before Grafana Assistant (manual ops)
Incident MTTR breakdown :
├─ Alert received : 5 min
├─ Dashboard loading : 3 min
├─ Log/trace retrieval : 10 min
├─ Root cause analysis : 15 min
├─ Communications/escalation : 5 min
└─ Remediation : 20 min
Total MTTR : ~60 minutes
Impact : 10-50 incidents/month = 10-50 hours ops time
Cost (ops salary $120k/year) : $50-250k year in incident response
Customer impact : 10-50 min outages/month
Revenue loss : $10k-100k per major incident
After Grafana Assistant
Grafana Assistant MTTR :
├─ Alert received : 5 min
├─ Grafana Assistant investigation : 3 min (auto)
├─ Root cause recommended : 0.5 min (auto)
├─ Human validates + acts : 8 min
└─ Remediation : 15 min
Total MTTR : ~30 minutes (50% reduction)
Impact : 10-50 incidents/month = 5-25 hours ops time
Cost savings : $25-125k year
Customer impact : 5-25 min outages/month
Revenue recovery : $5k-50k per major incident
Net benefit :
- Ops time saved : $50-125k/year
- Revenue recovered : $50-500k/year
- Total ROI : $100-625k/year per 50-person ops team
Pricing & Availability
Pricing model
Grafana Cloud :
├─ Pro ($9/user/mo) : No Grafana Assistant
├─ Advanced ($25/user/mo) : Grafana Assistant included ✓
└─ Premium ($45/user/mo) : Advanced features
Grafana Open Source (self-hosted) :
├─ Free : Grafana Assistant not available
└─ Coming Q1 2026 (estimated)
Enterprise (custom) :
├─ On-premise deployment
└─ Custom assistant fine-tuning
Adoption stats (October 2025)
Beta participants (March-October 2025) :
├─ Orgs using : 2,100+
├─ Daily active users : 45,000+
├─ Avg queries/day : 180k
├─ Satisfaction : 92/100 NPS
└─ Retention : 87% (vs 72% typical features)
Expected GA adoption :
├─ Q4 2025 : 10,000 orgs (existing customers)
├─ Q1 2026 : 25,000 orgs (growth)
└─ 2026 revenue impact : $15-20M (from Grafana's $100M ARR)
Integration workflow example
Real incident response
10:15 PM - Alert fires : "API error rate plus de 10%"
Grafana Assistant automatically :
├─ Pulls last 5 min of errors
├─ Correlates with recent changes (config deploy 8 min ago)
├─ Checks if rollback available (yes)
├─ Generates report
Dashboard displays :
┌─────────────────────────────┐
│ INCIDENT SUMMARY │
│ │
│ 🚨 Error rate spike 4m ago │
│ │
│ ROOT CAUSE (87% confident): │
│ Config deploy change broke │
│ database connection pooling │
│ │
│ RECOMMENDED ACTION: │
│ ▶ Rollback config deploy │
│ ▶ Monitor error rate recovery
│ │
│ Exec time : 2 min 34 sec │
└─────────────────────────────┘
Ops team clicks "Rollback" → Done in 30 seconds
Result :
├─ Error rate normal by 10:17 PM (2 min from incident start)
├─ No escalation needed (handled by Assistant)
└─ Customer impact : ~2 minutes (vs typical 20-30)
2026 Roadmap Grafana Assistant
Announced features :
Q1 2026 :
├─ eBPF-based detection (kernel-level monitoring)
├─ Cost optimization autopilot
└─ Automated runbooks execution
Q2 2026 :
├─ Predictive alerting (detect issues before they happen)
├─ Capacity planning (ML projections)
└─ Multi-vendor correlation (AWS, Azure, GCP unified)
H2 2026 :
├─ Self-healing capabilities (auto-remediation)
├─ SLA impact assessment
└─ Custom LLM fine-tuning (enterprise)
Articles connexes
Pour approfondir le sujet, consultez également ces articles :
- Les 6 tendances IA incontournables pour 2025 selon Microsoft
- Agents IA Autonomes : Révolutionner l'automation d'entreprise en 2025
- AI Tour Paris 2025 : Les agents IA transforment les entreprises selon Microsoft
Conclusion : AI transforms ops
Grafana Assistant représente l'avenir de l'observabilité : from reactive troubleshooting to proactive intelligence.
Impact 2026 :
- Ops teams can do 3x more with same headcount
- MTTR decreases 50-70% (industry average)
- False alerts decrease 40-60% (noise reduction)
- Team burnout reduced (smarter alerting)
Ressources :
- Grafana Labs : https://grafana.com
- Grafana Assistant Docs
- Demo video : https://grafana.com/blog/2025/10/assistant/




