Large Action Models : LLMs + Exécution actions
Large Action Models (LAMs) sont les successeurs des LLMs. Contrairement aux LLMs purs (génération texte), LAMs comprennent le contexte ET exécutent des actions : appels APIs, interactions UI, orchestration workflows.
Évolution :
- 2022 : GPT-3 (texte generation)
- 2023 : GPT-4 (meilleure comprehension)
- 2024 : Vision+Text multimodal (images)
- 2025 : Large Action Models (texte + actions) ← NOW
Impact :
- Productivity +400% (vs manual)
- RPA (Robotic Process Automation) obsolète (too rigid)
- Workflow automation autonomous 90%+
Différence LLM vs LAM
LLM (Large Language Model)
Input : "Book meeting with John on Monday 3pm"
Output : "I'll help you book a meeting with John on Monday at 3 PM.
Please provide John's email and meeting topic."
Action : None (requires human follow-up)
LAM (Large Action Model)
Input : "Book meeting with John on Monday 3pm"
LAM actions :
├─ Search contacts for "John" → finds john@company.com
├─ Check calendar Monday 3pm → available
├─ Create meeting (Outlook API)
├─ Send calendar invite
├─ Set reminder for 30 min before
└─ Reply : "✓ Meeting booked! John received invite."
Action : Complete (autonomous execution)
Architecture LAM
# Pseudo-code LAM architecture
class LargeActionModel:
def __init__(self):
self.reasoning_engine = ReasoningLLM() # Understands intent
self.tool_executor = ToolExecutor() # Runs actions
self.state_manager = StateManager() # Tracks context
def execute(self, user_instruction):
# Step 1 : Understand intent
intent = self.reasoning_engine.understand(user_instruction)
# intent = {"action": "book_meeting", "params": {"person": "John", "time": "Monday 3pm"}}
# Step 2 : Plan steps
plan = self.reasoning_engine.plan(intent)
# plan = [search_contacts, check_calendar, create_meeting, send_invite, set_reminder]
# Step 3 : Execute plan
for step in plan:
result = self.tool_executor.run(step)
if result.error:
# Handle error, adjust plan
new_plan = self.reasoning_engine.replan(intent, result.error)
# Step 4 : Report result
return f"✓ Meeting booked with {intent['params']['person']}"
Enterprise LAM applications 2025
1. Finance : Invoice automation
Traditional (RPA) :
├─ Extract invoice data (OCR) → 3-5% errors
├─ Input ERP system (slow UI) → 30 sec per invoice
├─ Match PO + validation → manual review 10%
├─ 1000 invoices/day @ 8 hours → 8 FTE needed
LAM-based :
├─ Receipt email trigger → LAM receives attachment
├─ Extract + understand context (90%+ accuracy)
├─ Auto-match PO (intelligent logic)
├─ Create GL entries (ERP APIs)
├─ Flag exceptions (anomalies detected)
├─ 1000 invoices/day @ 2 hours → 1 FTE needed
ROI : 7 FTE × $80k = $560k annual saving
2. HR : Recruitment process
LAM as recruiter assistant :
├─ Application received → Auto-parse resume
├─ Screening questions → Generate + present candidate
├─ Reference check → Contact references (email)
├─ Interview scheduling → Coordinate calendars (3-way)
├─ Offer generation → Draft offer letter
├─ Onboarding prep → Create accounts, send docs
Result : 60% faster hiring (weeks → days)
Quality : Bias reduction (objective evaluation)
3. Customer service
Customer : "My delivery is late"
LAM workflow :
├─ Parse issue
├─ Check shipment status (carrier API)
├─ Analyze delay reason (weather ? logistics ?)
├─ Check customer history (loyal ? first order ?)
├─ Decision tree :
│ ├─ If loyal + first delay → Send $20 credit
│ ├─ If repeat issue → Escalate + 30% refund
│ └─ If weather → Explain + track together
├─ Communicate (send message, resolve)
└─ Record case (CRM auto-update)
Result : 85% of issues resolved autonomously (vs 40% before)
Providers leaders LAM 2025
Automation frameworks :
OpenAI Agents (gpt-4 + actions)
├─ Reasoning : GPT-4 (excellent)
├─ Tool calling : Native APIs
├─ Vision : GPT-4V (images)
└─ Adoption : 100k+ developers
Anthropic's Claude with Tool Use
├─ Safe tool execution (constitutional AI)
├─ Accuracy : Best-in-class
└─ Enterprise adoptions growing
Google Gemini with Actions
├─ Multi-modal (text + image + video)
├─ Google services integration (Workspace, Cloud)
└─ Enterprise features emerging
Specialized platforms :
Zapier AI Actions
├─ 5000+ integrations (tools LAM can use)
├─ No-code workflow builder
└─ SMB focused
Automation Anywhere
├─ Traditional RPA + AI
├─ Enterprise support mature
└─ Legacy customers migrating
UiPath Studio + AI
├─ Visual workflow builder
├─ Process mining (identify automation opportunities)
└─ Enterprise adoption leader
Challenges & limitations LAM 2025
1. Hallucinations in actions
Problem :
Query : "Transfer $50k from account A to account B"
LAM without safety :
├─ Transfer $500k (misread amount)
├─ Transfer to wrong account (hallucinated)
└─ No human verification
Solution :
├─ Confidence thresholds (only execute plus de 95% confidence)
├─ Human review for sensitive actions
├─ Dry-run simulation first
├─ Audit trail mandatory
2. Latency for complex workflows
Workflow : "Process end-of-month close"
└─ Involves : 50+ steps, multiple systems, 2-3 hours
Latency breakdown :
├─ LLM thinking : 30 seconds
├─ API calls (sequential) : 45 minutes
├─ Waiting for approvals : 1+ hour
└─ Retries on failures : Variable
Challenge : Long-running workflows need async execution, state management
3. Cost at scale
Monthly cost scenario (5000 employees) :
LAM inference :
├─ 50k actions/day × $0.003 (avg) = $150/day
├─ 150 × 30 days = $45k/month
└─ At scale : Tools + APIs = +$30k (external integrations)
Total : $75k/month (enterprise budget)
vs human (5 FTE) = $400k/month
But : Requires infrastructure investment first ($200k)
ROI breakeven : 3 months
Governance & safety
Requirements for enterprise LAM
1. Audit trail (every action logged)
2. Approval workflows (sensitive actions require sign-off)
3. Rate limiting (prevent runaway actions)
4. Rollback capability (undo operations)
5. Compliance (audit, data protection)
6. Error handling (graceful degradation)
Example : Finance LAM governance
# Enterprise LAM policy enforcement
class EnterpriseFinanceLAM:
def __init__(self):
self.approval_engine = ApprovalEngine()
self.audit_log = AuditLog()
def transfer_money(self, from_account, to_account, amount):
# Step 1 : Validate within policy
if amount plus de 100000:
return "DENIED - Requires CFO approval"
# Step 2 : Execute with audit
self.audit_log.record({
"action": "transfer_money",
"from": from_account,
"to": to_account,
"amount": amount,
"timestamp": now(),
"executed_by": "LAM"
})
# Step 3 : Execute
result = self.api.transfer(from_account, to_account, amount)
# Step 4 : Verify
if not result.success:
return f"FAILED - {result.error}"
return "SUCCESS - Transfer completed"
2026 Predictions
LAM trends :
Q1 2026 :
├─ 30% enterprises running 1+ LAM (vs 8% today)
├─ LAM-as-a-Service becomes norm
└─ RPA tools add LAM capabilities (survival mode)
Q2-Q3 2026 :
├─ Horizontal LAMs (multi-industry)
├─ Vertical LAMs (finance, HR, supply chain specific)
└─ Compliance/audit frameworks mature
H2 2026 :
├─ Self-healing systems (LAMs fix their own errors)
├─ Predictive LAMs (prevent issues before they happen)
└─ Mainstream adoption (plus de 50% large enterprises)
Market impact :
├─ RPA market consolidation (fewer players)
├─ BPO (Business Process Outsourcing) disruption
├─ Job market shift (process specialists → prompt engineers)
Articles connexes
Pour approfondir le sujet, consultez également ces articles :
- Agents IA Autonomes : Révolutionner l'automation d'entreprise en 2025
- Anthropic Claude 3.5 Sonnet v2 : Computer Use et Coding Amélioré
- DeepMind AlphaCode 3 : L'IA qui Code Mieux que 90% des Développeurs
Conclusion : Autonomy meets workflow
LAMs represent the next frontier of GenAI : from intelligent assistance to autonomous execution.
Organizations investing in LAM infrastructure now will capture 3-5x productivity gains over competitors still using manual + RPA.
Key is : Governance + Safety + Clear use cases.
Les entreprises qui réussissent leurs premiers déploiements suivent un schéma commun : cadrer le périmètre (processus, outils autorisés), industrialiser la collecte des feedbacks métiers et établir un comité de gouvernance mixte IT/operations. Les LAMs ne remplacent pas la supervision humaine ; ils déplacent les experts vers des tâches de pilotage et d’optimisation continue. Dans les 12 à 18 prochains mois, les indicateurs clés à surveiller seront le taux d’exécution sans intervention humaine, le temps moyen de remédiation et la capacité à prouver la conformité des actions.
En définitive, les Large Action Models transforment les workflows en actifs stratégiques. Ils relient les systèmes hérités aux plateformes modernes, tout en apportant une couche d’intelligence décisionnelle. Le défi consiste moins à coder un agent qu’à orchestrer un écosystème d’outils, de politiques et de contrôles qui garantissent une automatisation responsable.
Ressources :
- OpenAI Function Calling : https://platform.openai.com/docs/guides/function-calling
- Anthropic Tool Use : https://docs.anthropic.com/en/docs/build-a-chatbot-with-claude




