Synthetic Data : Entraîner IA sans données réelles
Les données synthétiques sont des données générées artificiellement par algorithmes (GANs, diffusion models) qui ressemblent aux données réelles mais ne contiennent aucune information personnelle identifiable. Cette approche résout 3 problèmes majeurs du ML : privacy (RGPD compliance), coût (pas besoin collecter millions données réelles), diversité (générer scénarios rares).
En 2025, 60% des données d'entraînement IA utilisées par entreprises sont partiellement synthétiques (Gartner). Applications incluent santé (dossiers patients synthétiques), finance (transactions fraud detection), automotive (scénarios conduite autonome) et computer vision (images synthétiques variées).
Avantages :
- Privacy 100% : Pas de données réelles → RGPD compliant
- Coût -70% : Génération vs collecte/annotation manuelle
- Diversité +∞ : Générer edge cases, scénarios rares
- Scalability : Millions de samples en heures vs mois
- Bias reduction : Équilibrer classes (oversampling minorités)
Méthodes :
- GANs (Generative Adversarial Networks) : Images, tabular data
- Diffusion Models : Images haute qualité (Stable Diffusion)
- LLMs : Texte synthétique (conversations, documents)
- Simulateurs : Données 3D, physique (conduite autonome)
Adoption synthetic data
Le marché synthetic data atteint $3.2 milliards en 2025 (croissance 48% YoY). 78% des projets IA santé utilisent données synthétiques pour conformité HIPAA/RGPD. Microsoft génère 70% datasets training Copilot via synthetic data (code, conversations). Waymo (Google) entraîne conduite autonome avec 95% scénarios synthétiques.
Techniques génération
GANs pour données tabulaires
# Generate synthetic tabular data (ex: customer profiles)
from sdv.tabular import CTGAN
import pandas as pd
# 1. Load real data (sensitive customer data)
real_data = pd.read_csv("customers_real.csv")
# Columns: age, income, credit_score, purchase_history, zipcode
# 2. Train CTGAN (Conditional Tabular GAN)
model = CTGAN(
epochs=300,
batch_size=500,
generator_dim=(256, 256),
discriminator_dim=(256, 256)
)
model.fit(real_data)
# 3. Generate synthetic data (10,000 samples)
synthetic_data = model.sample(num_rows=10000)
# 4. Validate quality
from sdmetrics.reports.single_table import QualityReport
report = QualityReport()
report.generate(real_data, synthetic_data, metadata)
# Output: Quality Score 92% (high fidelity)
# 5. Privacy check (ensure no real data leaked)
from sdmetrics.single_table import NewRowSynthesis
privacy_score = NewRowSynthesis.compute(
real_data=real_data,
synthetic_data=synthetic_data,
metadata=metadata
)
# Output: 98.7% new rows (only 1.3% near-duplicates)
# → Synthetic data safe to share (RGPD compliant)
Use cases :
- Finance : Transactions bancaires synthétiques (fraud detection sans exposer données clients)
- Healthcare : Dossiers médicaux synthétiques (conformité HIPAA)
- Telco : Usage patterns clients (churn prediction)
Diffusion Models pour images
# Generate synthetic images (Stable Diffusion)
from diffusers import StableDiffusionPipeline
import torch
# 1. Load Stable Diffusion
pipe = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1",
torch_dtype=torch.float16
).to("cuda")
# 2. Generate synthetic product images
prompts = [
"professional photo of red sneaker, white background, studio lighting",
"professional photo of blue sneaker, white background, studio lighting",
# ... 1000 prompts (variations: colors, angles, styles)
]
synthetic_images = []
for prompt in prompts:
image = pipe(prompt, num_inference_steps=50).images[0]
synthetic_images.append(image)
image.save(f"synthetic_{len(synthetic_images)}.jpg")
# 3. Use for training (object detection, classification)
# → No need photograph 1000 real products!
Use cases :
- E-commerce : Product images variations (training visual search)
- Automotive : Road scenarios synthétiques (conduite autonome)
- Medical imaging : CT scans synthétiques (rare diseases)
LLMs pour texte synthétique
# Generate synthetic conversations (customer support)
from openai import OpenAI
client = OpenAI()
# Template conversation
template = """
Generate realistic customer support conversation:
- Topic: {topic}
- Customer sentiment: {sentiment}
- Resolution: {resolution}
Format: alternating Customer/Agent messages
"""
topics = ["refund request", "technical issue", "product question"]
sentiments = ["frustrated", "neutral", "happy"]
resolutions = ["resolved", "escalated", "pending"]
synthetic_conversations = []
for topic in topics:
for sentiment in sentiments:
for resolution in resolutions:
prompt = template.format(
topic=topic,
sentiment=sentiment,
resolution=resolution
)
response = client.chat.completions.create(
model="gpt-4-turbo",
messages=[{"role": "user", "content": prompt}],
n=5 # 5 variations
)
for choice in response.choices:
synthetic_conversations.append(choice.message.content)
# Result: 135 synthetic conversations (3×3×3×5)
# → Train chatbot without real customer data (privacy!)
Applications production
1. Waymo - Conduite autonome
WAYMO SYNTHETIC DATA PIPELINE:
PROBLEM:
• Real-world driving: 10M miles needed
• Edge cases rare (1/100k miles): accidents, extreme weather
• Cost: $5M+ (fleet, drivers, annotation)
• Safety risk: Testing dangerous scenarios
SOLUTION SYNTHETIC:
• Simulator: Carla, NVIDIA Drive Sim
• Generate: 1B miles synthetic (scenarios vary)
SCENARIOS GENERATED:
├── Weather: Rain, snow, fog (all intensities)
├── Traffic: Dense, sparse, accidents
├── Pedestrians: Crossing, jaywalking, children
├── Edge cases: Blown tire, animal crossing, debris
└── Adversarial: Worst-case scenarios
TRAINING:
├── Real data: 10M miles (5%)
├── Synthetic: 190M miles (95%)
└── Model: Perception + planning neural nets
RESULTS:
✓ Accidents (simulation): -87% vs real-only training
✓ Edge case handling: +92% (rare scenarios well learned)
✓ Cost: $800k vs $50M all-real (94% savings)
✓ Time: 6 months vs 4 years
2. Healthcare - Dossiers patients synthétiques
HOSPITAL DATASET (Privacy challenge):
REAL DATA (Cannot share - HIPAA/RGPD):
• 50,000 patient records
• Demographics, diagnoses, treatments, outcomes
• Highly sensitive (medical history)
SYNTHETIC GENERATION (Gretel.ai):
1. Train GAN on real data (secure enclave)
2. Generate 50,000 synthetic patients
├── Age, gender, ethnicity (realistic distributions)
├── Medical history (correlated conditions)
├── Treatments and outcomes (realistic patterns)
└── Zero link to real patients (privacy verified)
3. Quality metrics:
├── Statistical similarity: 94% (vs real)
├── Correlation preservation: 91%
├── Privacy: 99.8% new records
└── Usability: ML models trained 96% accuracy vs 97% on real
USE CASES:
✓ Share with researchers (no consent needed)
✓ Train ML models (disease prediction, drug efficacy)
✓ Publish datasets (accelerate research)
✓ Testing algorithms (no patient risk)
IMPACT:
• Research velocity: +3x (data sharing friction removed)
• Compliance: 100% HIPAA/RGPD (no real data exposed)
• Cost: -90% vs anonymization (which often fails re-identification tests)
Challenges et limitations
LIMITES SYNTHETIC DATA 2025:
1. QUALITY GAP:
├── Synthetic ≈ 92-96% real data quality
├── Edge cases: Sometimes missing nuances
└── Solution: Hybrid (80% synthetic + 20% real)
2. MODE COLLAPSE (GANs):
├── Generator produces limited variety
├── Example: All synthetic faces look similar
└── Solution: Diffusion models (better diversity)
3. PRIVACY LEAKAGE:
├── Risk: Memorization (GAN "remembers" real samples)
├── Metric: Verify <5% similarity to real data
└── Tools: Differential privacy, membership inference tests
4. DOMAIN LIMITATIONS:
├── Complex: Time-series, graphs hard to synthesize well
├── Best: Tabular, images, text (mature)
└── Emerging: Video, 3D, audio (improving)
5. VALIDATION:
├── How ensure synthetic data good enough?
├── Metrics: Statistical tests, ML model parity
└── Best practice: Test on real holdout set
Outils et plateformes
SYNTHETIC DATA PLATFORMS 2025:
1. GRETEL.AI:
• Focus: Tabular, time-series, text
• Privacy: Differential privacy guarantees
• Pricing: $500-5k/month (enterprise)
• Use case: Finance, healthcare
2. MOSTLY.AI:
• Focus: Tabular (structured data)
• Quality: 95% statistical accuracy
• Free tier: 100k rows/month
• Use case: Banking, insurance
3. NVIDIA OMNIVERSE REPLICATOR:
• Focus: 3D synthetic images (robotics, automotive)
• Integration: Isaac Sim, Drive Sim
• Pricing: Enterprise (contact sales)
• Use case: Autonomous vehicles, robots
4. SYNTHESIS.AI:
• Focus: Synthetic faces, humans (computer vision)
• Diversity: Ethnicities, ages, poses
• Pricing: $10k-100k/project
• Use case: Face recognition, retail
5. HAZY:
• Focus: Enterprise data (CRM, ERP)
• Privacy: GDPR certified
• Pricing: Enterprise
• Use case: Software testing, demos
OPEN SOURCE:
├── SDV (Synthetic Data Vault): Tabular, time-series
├── CTGAN: Conditional Tabular GAN (MIT)
├── Stable Diffusion: Images
└── GPT-4: Text generation
Articles connexes
- Fine-tuning LLMs : Guide pratique 2025 pour adapter vos modèles
- IA et conformité RGPD : Guide complet entreprises européennes
- Computer Vision 2025 : Applications industrielles révolutionnaires
Conclusion : Synthetic data devient mainstream
Les données synthétiques transforment le ML en résolvant privacy, coût et diversité simultanément. Avec 60% adoption entreprise et outils matures (Gretel, Mostly.AI), le synthetic data devient standard, pas exception.
Forces :
- Privacy : 100% RGPD/HIPAA compliant (zéro données réelles)
- Coût : -70-90% vs collecte réelle
- Diversité : Edge cases, scénarios rares générables
- Scalability : Millions samples en heures
Use cases production :
- Healthcare : Dossiers patients synthétiques (recherche)
- Finance : Transactions fraud detection (privacy)
- Automotive : Conduite autonome (95% synthetic chez Waymo)
- Retail : Product images (visual search training)
2026 : Prédiction 70% données training IA partiellement synthétiques. Régulations encouragent synthetic (RGPD Article 5) car minimise risques privacy. La question n'est plus "Synthetic ou réel ?" mais "Quel ratio optimal ?"



